Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We introduce two complementary techniques for efficient optimization that reduce memory requirements while accelerating training of large-scale neural networks. The first technique, Subset-Norm step size, generalizes AdaGrad-Norm and AdaGrad(-Coordinate) through step-size sharing. Subset-Norm (SN) reduces AdaGrad’s memory footprint from O(d) to O(sqrt(d)), where d is the model size. For non-convex smooth objectives under coordinate-wise sub-gaussian noise, we show a noise-adapted high-probability convergence guarantee with improved dimensional dependence of SN over existing methods. Our second technique, Subspace-Momentum, reduces the momentum state’s memory footprint by restricting momentum to a low-dimensional subspace while performing SGD in the orthogonal complement. We prove a high-probability convergence result for Subspace-Momentum under standard assumptions. Empirical evaluation on pre-training and fine-tuning LLMs demonstrates the effectiveness of our methods. For instance, combining Subset-Norm with Subspace-Momentum achieves Adam’s validation perplexity for LLaMA 1B in approximately half the training tokens (6.8B vs 13.1B) while reducing Adam’s optimizer-states memory footprint by more than 80% with minimal additional hyperparameter tuning.more » « lessFree, publicly-accessible full text available July 13, 2026
- 
            In the maximum coverage problem we are given d subsets from a universe [n], and the goal is to output k subsets such that their union covers the largest possible number of distinct items. We present the first algorithm for maximum coverage in the turnstile streaming model, where updates which insert or delete an item from a subset come one-by-one. Notably our algorithm only uses polylogn update time. We also present turnstile streaming algorithms for targeted and general fingerprinting for risk management where the goal is to determine which features pose the greatest re-identification risk in a dataset. As part of our work, we give a result of independent interest: an algorithm to estimate the complement of the pth frequency moment of a vector for p ≥ 2. Empirical evaluation confirms the practicality of our fingerprinting algorithms demonstrating a speedup of up to 210x over prior work.more » « lessFree, publicly-accessible full text available July 13, 2026
- 
            Constrained k-submodular maximization is a general framework that captures many discrete optimization problems such as ad allocation, influence maximization, personalized recommendation, and many others. In many of these applications, datasets are large or decisions need to be made in an online manner, which motivates the development of efficient streaming and online algorithms. In this work, we develop single-pass streaming and online algorithms for constrained k-submodular maximization with both monotone and general (possibly non-monotone) objectives subject to cardinality and knapsack constraints. Our algorithms achieve provable constant-factor approximation guarantees which improve upon the state of the art in almost all settings. Moreover, they achieve the fastest known running times and have optimal space usage. We experimentally evaluate our algorithms on instances for ad allocation and other applications, where we observe that our algorithms are practical and scalable, and construct solutions that are comparable in value even to offline greedy algorithms.more » « lessFree, publicly-accessible full text available February 25, 2026
- 
            We study the problem of private vector mean estimation in the shuffle model of privacy where n users each have a unit vector v^{(i)} in R^d. We propose a new multi-message protocol that achieves the optimal error using O~(min(n*epsilon^2, d)) messages per user. Moreover, we show that any (unbiased) protocol that achieves optimal error requires each user to send Omega(min(n*epsilon^2,d)/log(n)) messages, demonstrating the optimality of our message complexity up to logarithmic factors. Additionally, we study the single-message setting and design a protocol that achieves mean squared error O(dn^{d/(d+2)} * epsilon^{-4/(d+2)}). Moreover, we show that any single-message protocol must incur mean squared error Omega(dn^{d/(d+2)}), showing that our protocol is optimal in the standard setting where epsilon = Theta(1). Finally, we study robustness to malicious users and show that malicious users can incur large additive error with a single shuffler.more » « less
- 
            In this work, we revisit the generalization error of stochastic mirror descent for quadratically bounded losses studied in Telgarsky (2022). Quadratically bounded losses is a broad class of loss functions, capturing both Lipschitz and smooth functions, for both regression and classification problems. We study the high probability generalization for this class of losses on linear predictors in both realizable and non-realizable cases when the data are sampled IID or from a Markov chain. The prior work relies on an intricate coupling argument between the iterates of the original problem and those projected onto a bounded domain. This approach enables blackbox application of concentration inequalities, but also leads to suboptimal guarantees due in part to the use of a union bound across all iterations. In this work, we depart significantly from the prior work of Telgarsky (2022), and introduce a novel approach for establishing high probability generalization guarantees. In contrast to the prior work, our work directly analyzes the moment generating function of a novel supermartingale sequence and leverages the structure of stochastic mirror descent. As a result, we obtain improved bounds in all aforementioned settings. Specifically, in the realizable case and non-realizable case with light-tailed sub-Gaussian data, we improve the bounds by a $$\log T$$ factor, matching the correct rates of $1/T$ and $$1/\sqrt{T}$$, respectively. In the more challenging case of heavy-tailed polynomial data, we improve the existing bound by a $$\mathrm{poly}\ T$$ factor.more » « less
- 
            In this work, we study the convergence in high probability of clipped gradient methods when the noise distribution has heavy tails, i.e., with bounded $$p$$th moments, for some $$1< p \leq 2$$. Prior works in this setting follow the same recipe of using concentration inequalities and an inductive argument with union bound to bound the iterates across all iterations. This method results in an increase in the failure probability by a factor of $$T$$, where $$T$$ is the number of iterations. We instead propose a new analysis approach based on bounding the moment generating function of a well chosen supermartingale sequence. We improve the dependency on $$T$$ in the convergence guarantee for a wide range of algorithms with clipped gradients, including stochastic (accelerated) mirror descent for convex objectives and stochastic gradient descent for nonconvex objectives. Our high probability bounds achieve the optimal convergence rates and match the best currently known in-expectation bounds. Our approach naturally allows the algorithms to use time-varying step sizes and clipping parameters when the time horizon is unknown, which appears difficult or even impossible using existing techniques from prior works. Furthermore, we show that in the case of clipped stochastic mirror descent, several problem constants, including the initial distance to the optimum, are not required when setting step sizes and clipping parameters.more » « less
- 
            We consider the problem of clustering in the learning-augmented setting. We are given a data set in $$d$$-dimensional Euclidean space, and a label for each data point given by a predictor indicating what subsets of points should be clustered together. This setting captures situations where we have access to some auxiliary information about the data set relevant for our clustering objective, for instance the labels output by a neural network. Following prior work, we assume that there are at most an $$\alpha \in (0,c)$$ for some $c<1$ fraction of false positives and false negatives in each predicted cluster, in the absence of which the labels would attain the optimal clustering cost $$\mathrm{OPT}$$. For a dataset of size $$m$$, we propose a deterministic $$k$$-means algorithm that produces centers with an improved bound on the clustering cost compared to the previous randomized state-of-the-art algorithm while preserving the $$O( d m \log m)$$ runtime. Furthermore, our algorithm works even when the predictions are not very accurate, i.e., our cost bound holds for $$\alpha$$ up to $1/2$, an improvement from $$\alpha$$ being at most $1/7$ in previous work. For the $$k$$-medians problem we again improve upon prior work by achieving a biquadratic improvement in the dependence of the approximation factor on the accuracy parameter $$\alpha$$ to get a cost of $$(1+O(\alpha))\mathrm{OPT}$$, while requiring essentially just $$O(md \log^3 m/\alpha)$$ runtime.more » « less
- 
            In this paper, we study the finite-sum convex optimization problem focusing on the general convex case. Recently, the study of variance reduced (VR) methods and their accelerated variants has made exciting progress. However, the step size used in the existing VR algorithms typically depends on the smoothness parameter, which is often unknown and requires tuning in practice. To address this problem, we propose two novel adaptive VR algorithms: Adaptive Variance Reduced Accelerated Extra-Gradient (AdaVRAE) and Adaptive Variance Reduced Accelerated Gradient (AdaVRAG). Our algorithms do not require knowledge of the smoothness parameter. AdaVRAE uses $$\mathcal{O}\left(n\log\log n+\sqrt{\frac{n\beta}{\epsilon}}\right)$$ and AdaVRAG uses $$\mathcal{O}\left(n\log\log n+\sqrt{\frac{n\beta\log\beta}{\epsilon}}\right)$$ gradient evaluations to attain an $$\mathcal{O}(\epsilon)$$-suboptimal solution, where $$n$$ is the number of functions in the finite sum and $$\beta$$ is the smoothness parameter. This result matches the best-known convergence rate of non-adaptive VR methods and it improves upon the convergence of the state of the art adaptive VR method, AdaSVRG. We demonstrate the superior performance of our algorithms compared with previous methods in experiments on real-world datasets.more » « less
- 
            We develop new adaptive algorithms for variational inequalities with monotone operators, which capture many problems of interest, notably convex optimization and convex-concave saddle point problems. Our algorithms automatically adapt to unknown problem parameters such as the smoothness and the norm of the operator, and the variance of the stochastic evaluation oracle. We show that our algorithms are universal and simultaneously achieve the optimal convergence rates in the non-smooth, smooth, and stochastic settings. The convergence guarantees of our algorithms improve over existing adaptive methods and match the optimal non-adaptive algorithms. Additionally, prior works require that the optimization domain is bounded. In this work, we remove this restriction and give algorithms for unbounded domains that are adaptive and universal. Our general proof techniques can be used for many variants of the algorithm using one or two operator evaluations per iteration. The classical methods based on the ExtraGradient/MirrorProx algorithm require two operator evaluations per iteration, which is the dominant factor in the running time in many settings.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available